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Applications of Interest

Electromagnetic imaging in the near field has a variety of
applications.

We are interested in using time-harmonic EM fields for the 3D
imaging of domains or objects.

Of particular concern to us is penetration depth. The objects
we are interested in might be enclosed in metallic boxes or in
a conductive environment.

Practical applications include:

Geophysics/Environmental - Locating objects in the earth
(> 200m3)
Cargo Containers (∼ 10m3)
Boxes/Suitcases/Luggage (∼ 1m3)
Small boxes (∼ 0.5m3)
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Proof of Concept - Geophysical Scale (> 200m3)

Source: https://en.wikipedia.org/wiki/Lost Hills Oil Field
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Proof of Concept - Cargo Container Scale (20m3)

Source: Wikipedia https://en.wikipedia.org/wiki/Cargo scanning
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Proof of Concept - Luggage and Box Scale (2m3)

Source: https://en.wikipedia.org/wiki/Airport security
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Maxwell’s Equations

∇× E − iωµH = Ms

∇× H − σ̂(x)E = Js

σ̂ = σ − iωε

Use one frequency (for the moment).

We want to use ‘low frequencies’ in order to increase
penetration depth. Fields tend to behave diffusive. Inverse
problem becomes severely ill-posed.

Singularities inside the domain are not represented by
‘measurable’ singularities in the data.
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Mathematical Forward Problem

For the moment we restrict ourselves to imaging σ.

We write Maxwell’s equations in operator form as

Λ(σ) u = q

with u = (E ,H) and q being the source (e.g. coil)

Forward operator A mapping the parameter σ to the
corresponding data g = Mu:

A(σ) = M u = M Λ(σ)−1q

where M is the linear measurement operator (e.g. coils)
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Optimization problem formulation of inverse problem

Physically measured ’true data’ (for ũ being true field)

g̃ = Mũ

Residual operator R:

R(σ) = A(σ)− g̃ .

Optimization problem (regularized output least squares)

Minσ J (σ) =
1

2
‖R(σ)‖2

2 +
η

2
‖σ‖α

where ‖σ‖α denotes some norm or semi-norm of σ and η is
some regularization parameter.
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The shape-based inverse problem

Often we are interested in detecting and characterizing specific
objects (targets) of unknown shapes (a priori assumption).

Can we determine and characterize shape-like targets (with
sharp interfaces to the background) from data that do not
contain visible singularities?

In more details, assume that the parameter σ has the
following specific form

σ(x) =

{
σi in S

σe(x) in Ω\S

where S is the shape of interest.
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Shape evolution approach (‘shape optimal control’)

shape after a few

shape after more

’time−steps’

’time−steps’
hidden objects

initial shape
Shape Evolution
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Shape evolution by artificial shape velocity field

n(x)

F(x) = V(x) n(x)

boundary

Γ = δΩ

V(x)

Moving the boundary with velocity field V(x)
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Practical shape optimization

There are two basic problems to solve in the shape evolution
approach:

1 Constructing an appropriate velocity function from boundary
data.

2 Moving the shape computationally according to the velocity
function

Notice that: During the evolution, the ease of handling topological
changes is crucial since we do not know the topology of the shapes
a-priori.
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Level set approach

Introduce a sufficiently smooth level set function ψ such that

σ(x) =

{
σi , if ψ(x) ≤ 0
σe , if ψ(x) > 0

level set function
S+S(ψ )

shape δ+S S

(S)ψ

δS+S(ψ ) ψ(S) δψ ( S)= +

plane z=0

x

y

z

level set function
δ
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Formal setup

The boundary Γ(t) of the shape S at time t is

Γ(t) = {x : ψ(x , t) = 0}

The residual operator R

R(ψ) = R(σ(ψ)) = A(σ(ψ))− g̃

is now understood as a function in ψ.

The least squares cost functional (without explicit
regularization term) is given by

J (ψ) =
1

2
‖R(ψ)‖2
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Some formal calculations

We consider the general evolution law

dψ

dt
= f (x , t, ψ,A, g̃ , . . .)

We introduce the one-dimensional Heaviside function h(ψ)

h(ψ) =

{
1 , ψ > 0
0 , ψ ≤ 0

Then, we can write

σ(ψ) = σeh(ψ) + σi (1− h(ψ)).

Formal differentiation yields

dσ

dψ
= (σe − σi )δ(ψ)
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More formal calculations

Formal differentiation of the least squares cost functional
J (σ(ψ(t))) yields

dJ
dt

=
dJ
dσ

dσ

dψ

dψ

dt
=
〈
R′(σ)∗R(σ) ,

dσ

dψ

dψ

dt

〉
P

by the chain rule.

Here, R′(σ) is the linearized residual operator, and R′(σ)∗ is
its adjoint.

Remark: The sensitivities R′(σ)∗R(σ) can be calculated
efficiently by just solving one forward and one adjoint Maxwell
problem (’adjoint scheme’).
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Adjoint scheme for calculating sensitivities

The operator R′(σ)∗ is defined by

〈R′(σ)δσ, ρ〉
Z

= 〈δσ,R′(σ)∗ρ〉
P
. (1)

We have
R′(σ)∗jRj(σ) = Ej(x) · E j(x) (2)

where Ej and Hj are the solution of the ’adjoint Maxwell
system’ (

−b ∇×
∇× a0

)(
Ej
Hj

)
= M∗j Rj(σ)
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Even more formal calculations

Collecting terms yields

dJ
dt

=
〈
R′(σ)∗R(σ) , (σe − σi )δ(ψ) f (x , . . .)

〉
P

.

Let us define now the descent direction f
d

by

f
d
(x , t, ψ,R, . . .) = −F χNB,∂S

with the narrowband function χNB,∂S(x) and

F (x) = (σe − σi )R′(σ)∗R(σ).

This provides us with a descent flow for J .
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Regularization

Regularization: Use regularized forcing term

fr = (αI − β∆)−1 f
d

with regularization parameters α > 0 and β > 0.

Discretization: We calculate discrete time-steps with step-size
τ > 0

ψ(t + τ)− ψ(t)

τ
= (αI − β∆)−1 f

d
(t)

With ψ(n+1) = ψ(t + τ) and ψ(n) = ψ(t), this yields

ψ(n+1) = ψ(n) + τ (n)δψ(n), ψ(0) = ψ0

with
δψ(n) = (αI − β∆)−1 f (n)

d
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A nonlinear Kaczmarz style approach with line search

The step size τ (n) needs to be determined by a line search
procedure.

Regardless which forward solver we use, 3D Maxwell
simulation in heterogeneous media is computationally
expensive.

Full gradient calculation requires one forward and one adjoint
solve times the number of sources. A traditional line search
requires another one or two forward solves per source. This is
too expensive!

Instead, we apply updates immediately after an individual
source position is considered (‘nonlinear Kaczmarz’).

As line search we control the ‘shape speed’ instead of
reduction in cost which can be done ‘on the fly’ without extra
computational cost (no additional forward or adjoint problem).
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Numerical forward solver

We are currently experimenting with two different numerical
forward solvers.

1 A finite volume frequency domain discretization in 3D.

2 A finite difference frequency domain discretization in 3D.

Alternative forward solvers are possible, such as finite elements or
variants of iterated Born/Neumann series.
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Schematic pseudo code I

, HfE f

, HfE f

receiver , data g(S)

receiver , data g(S)

Ω

source

u(S) u(S)

Forward Problem

domain

shape S
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Schematic pseudo code II

Ea , Ha

Ea , Ha

g(S) − g~

z(S)
z(S)

adjoint sources:
(phase−conjugated residuals)
attached at receiver positions

Adjoint Problem source

domainΩ

shapeS
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Schematic pseudo code III

Ef , Hf

domain Ω

source

(from forward problem)

E , Ha a

(from adjoint problem)

u(S)

z(S)
z(S)

u(S)

Adjoint Scheme

shape S
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Schematic pseudo code IV

plane z=0

x

y

z

shape S δS S+δS+

level set function

f(S+δS) = f(S) + δ f (F(S))
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Schematic pseudo code V

source

Ωdomain

receiver

receiver

F(S)

F(S)=F(u(S),z(S))

shape S S+δ
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Geometry of Problem (Geophysics and Environmental)
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Figure: f = 1kHz.
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Proof of concept - Geophysics scale

Figure: f = 1kHz.
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Geometry of Problem (boxes and containers)
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Figure: f = 0.2 MHz (containers) or f = 10MHz (boxes)
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Sensitivity Functions
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Proof of Concept - Cargo Container Scale (20m3)
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Proof of Concept - Box Scale (1m3)
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Summary

Shapes and objects can be estimated and characterized from
low frequency EM data when going beyond the Born
approximation;

This allows for penetrating shielding structures such as walls,
foliage, metallic cases, or the surface of the Earth (GPR);

Computational cost is increased due to the need for forward
models incorporating inhomogeneous backgrounds;

Multistatic antenna setups are preferred in order to obtain 3D
reconstructions;

Novel measurement technologies inspire new applications;

This can be applied at various scales;

Much research still needs to be done . . .
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QUESTIONS?
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